Bacillus Probiotics

SUMMARY

Bacillus species have been used as probiotics for at least 50 years with the Italian product known as Enterogermina® registered 1958 in Italy as an OTC medicinal specialty. The scientific interest in Bacillus species as probiotics though, has only occurred in the last 15 years and three principal reviews have covered the field (1-3). Of the species that have been most extensively examined these are *Bacillus subtilis*, *Bacillus clausii*, *Bacillus cereus*, *Bacillus coagulans* and *Bacillus licheniformis*. Spores being heat-stable have a number of advantages over other non-spore-formers such as *Lactobacillus* spp., namely, that the product can be stored at room temperature in a desiccated form without any deleterious effect on viability. A second advantage is that the spore is capable of surviving the low pH of the gastric barrier (4,5) which is not the case for all species of *Lactobacillus* (6), so in principle a specified dose of spores can be stored indefinitely without refrigeration and the entire dose of ingested bacteria will reach the small intestine intact. Spore probiotics are being used extensively in humans as dietary supplements (*Table 1*), in animals as growth promoters and competitive exclusion agents (*Table 2*) and lastly in aquaculture for enhancing the growth and disease-resistance of cultured shrimps, most notably the Black Tiger shrimp (*Penaeus monodon*) (*Table 3*). This review will focus primarily on the use of spore products for human use. Interestingly, a number of *Bacillus* products are licensed as OTC products. Rather than describing specific products a short summary of the major *Bacillus* species used in commercial products will be summarised.

INTRODUCTION

Bacterial spores

Bacterial spores are produced in nature as a means to survive extreme environmental conditions enabling long-term survival in conditions that could otherwise kill vegetative bacteria (7). The decision to sporulate is very much dependant upon the decline in nutrients in the immediate vicinity of the live cell. Sensing this, the bacterium enters an irreversible program of development that results in the production of a spore some eight hours later (*Fig 1*) (8). Intrinsic to survival is the structure of the bacterial endospore, that contains, at its core, a condensed and inactive chromosome. Additional layers surround the spore, including a peptidoglycan-rich cortex and one or more layers of proteinaceous material referred to as the spore coat (9).

Figure 1 The Sporulation Life Cycle

A schematic showing the opposed life cycles of bacterial spore formers. Under conditions of nutrient starvation the growing, vegetative cell (VC) will undergo a series of morphological changes that create a forespore (F) within the mother cell (MC) of the sporangium. After approximately eight hours the spore (S) is released by lysis of the MC.
Together these protect the spore from UV radiation, extremes of heat (typically up to 80-85°C in most species), exposure to solvents, hydrogen peroxide and enzymes such as lysozyme (7). The spore itself is dehydrated and if exposed to appropriate nutrients will germinate, a process taking just a few minutes, allowing water to enter the spore, breakage and removal of the spore coats, and outgrowth and resumption of vegetative cell growth (Fig 1) (10). Depending on species, spores are spherical or ellipsoidal in shape, between 0.8-1.4 μm in length, have a negative surface charge and are moderately hydrophobic. Spore forming bacteria commonly fall under two genera, Bacillus and the strictly anaerobic Clostridium although a surprisingly large number of other, lesser-known, genera include spore formers.

B. clausii
B. clausii spores are used in the product Enterogermina® which is registered as an OTC medicinal supplement. Unusually, spores (2 X 10^9) are suspended in 5ml of water and 2-3 vials are taken each day with the aim of preventing infantile diarrhoea. The suspension of spores in water is thought to enhance delivery of spores to the gut.

Table 1 Bacillus probiotics for human use

<table>
<thead>
<tr>
<th>Brand</th>
<th>Manufacturer</th>
<th>Comments/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bactisubtil®</td>
<td>Produced by Marion Merrell (Levallois- Perret, France) but also by Hoechst and then Aventis Pharma following merger acquisitions. Also cited as being produced by Casella-Med, Cologne, Germany</td>
<td>Capsule carrying 1 x 10^9 spores of Bacillus cereus strain IP 5832 (ATCC 14893) [n.b., originally deposited as B. subtilis].</td>
</tr>
<tr>
<td>Biosporin®</td>
<td>(1) Biofarm, Dniepropetrovsk, Ukraine</td>
<td>Biosporin® is a mixture of two strains of living antagonistic bacteria B. subtilis 2335 (sometimes referred to as B. subtilis 3) and B. licheniformis 2336 (ratio is 3:1). Originally isolated from animal fodder</td>
</tr>
<tr>
<td>(2) Gataris, Russia</td>
<td>There are a number of versions of this products produced in different countries including a recombinant form, Subalin</td>
<td></td>
</tr>
<tr>
<td>Biovercin®</td>
<td>Geyer Medicamentos S. A. Porto Alegre, RS, Brazil http://www.geyermed.com</td>
<td>B. cereus strain GM Suspension of 10^9 spores ml^-1</td>
</tr>
<tr>
<td>Bispan®</td>
<td>Henx Co. Ltd, Busan, S. Korea - www.hs-nex.com</td>
<td>Tablet carrying spores (1.7 x 10^9) of B. polyfermenticus SCDC</td>
</tr>
<tr>
<td>Domuvor</td>
<td>BioProgress SpA, Anagni, Italy - www.giorgil.it</td>
<td>Vial carrying 1 x 10^9 spores of Bacillus clausii in suspension, labelled as carrying B. subtilis. No longer marketed</td>
</tr>
<tr>
<td>Enterogermina®</td>
<td>Sanofi Winthrop SpA, Milan, Italy - www.automedicazione.it</td>
<td>Vial (5 ml) carrying 1 x 10^9 spores of B. clausii in suspension. At least four different strains of B. clausii present and product originally labelled as carrying B. subtilis</td>
</tr>
<tr>
<td>Flora-Balance</td>
<td>Flora-Balance, Montana, USA - www.flora-balance.com</td>
<td>Capsules labelled as carrying B. laterosporus BOD but containing Brevisbacillus laterosporus BOD</td>
</tr>
<tr>
<td>Sustenex®</td>
<td>Ganeden Biotech Inc., Ohio, USA - www.sustenex.com</td>
<td>B. coagulans GanedenBC101® This is a patented strain that has GRAS approval in the USA</td>
</tr>
<tr>
<td>Lactic-Plus</td>
<td>Istituto Biochimico Italiano SpA, Milan, Italy</td>
<td>Capsule carrying spores of Bacillus subtilis labelled as carrying 2 x 10^9 spores of Lactobacillus sporogenes^c</td>
</tr>
<tr>
<td>Lactospore</td>
<td>Sabinsa Corp., Piscataway, NJ, USA - www.sabinsa.com</td>
<td>Labelled as Lactobacillus sporogenes^c but contains B. coagulans 6-15 x 10^9 g^-1</td>
</tr>
<tr>
<td>Medilac-Vita</td>
<td>Hanmi Pharmaceutical Co. Ltd., Beijing, China www.hanmi.co.kr</td>
<td>B. subtilis strain R0179 (at 10^8 g^-1) in combination with Enterococcus faecium</td>
</tr>
<tr>
<td>Nature’s First Food</td>
<td>Nature’s First Law, San Diego, CA, USA http://www.rawfood.com</td>
<td>42 species listed as probiotics including: B. subtilis, B. polymyxa^c, B. pumilus and B. laterosporus^c</td>
</tr>
<tr>
<td>Neolactofoorese</td>
<td>Newpharma S.r.l., Milan, Italy</td>
<td>Mixture of lactic acid bacteria inc. L. acidophilus, B. bifidum and L. sporogenes^c L. sporogenes at 3.3 x 10^9 CFU g^-1 whose valid name is B. coagulans and is mislabelled as a strain of B. subtilis</td>
</tr>
<tr>
<td>Primal Defense™</td>
<td>Garden of Life®, Palm Beach, Florida, USA http://www.gardenoilife.com/</td>
<td>B. subtilis</td>
</tr>
</tbody>
</table>

a This list is likely incomplete and excludes Vietnamese products that are shown in Table 4
b Contains the same strain used in the now discontinued animal feed product Paciflor
c Not recognised as a Bacillus species (www.bacterio.cict.fr)
mucosa and demonstrates the versatility of spore formulations. The product carries four antibiotic resistant strains of *B. clausii* that are recommended for use with antibiotics (11-13). Although the initial scientific studies used to register this product in 1958 are obscure, clinical trials have subsequently been performed demonstrating efficacy. The product was originally labelled as carrying spores of *B. subtilis* but subsequent studies have identified the species as *B. clausii* (12,13). This product is not specifically referred to as a probiotic but claims to enhance the body’s immune system following germination of the spores in the small intestine.

B. coagulans

This species is often labelled, incorrectly, as *Lactobacillus sporogenes* which is an unrecognised species name. The origin of this species for use in probiotics stems from India where a number of manufacturers produce *B. coagulans* as a food ingredient for export and relabelling in Europe and the US.

B. coagulans secretes a bacteriocin, Coagulin, which has activity against a broad spectrum of enteric microbes (14) and the organism has been shown to have beneficial effects on urinary tract infections (15). More recently one strain, labelled as Gane-denBC30 has been granted self-affirmed GRAS status by the EU.

Table 2 *Bacillus* probiotics for veterinary use

<table>
<thead>
<tr>
<th>Brand</th>
<th>Animal</th>
<th>Manufacturer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCare™</td>
<td>Swine</td>
<td>Alpharma Inc., Melbourne, Australia</td>
<td>B. licheniformis (NCTC 13123) at 10⁹-10¹⁰ spores kg⁻¹. This is a non-bacitracin producing strain. Not licensed in the EU</td>
</tr>
<tr>
<td>BiotGrow®</td>
<td>Poultry, calves and swine</td>
<td>Provita Eurotech Ltd., Omagh, Northern Ireland, UK.</td>
<td>Listed as containing spores of B. licheniformis (1.6 x 10⁹ CFU g⁻¹) and B. subtilis (1.6 x 10⁹ CFU g⁻¹)</td>
</tr>
<tr>
<td>BioPlus® 2B</td>
<td>Piglets, chickens, turkeys for fattening</td>
<td>Christian Hansen Hoersholm, Denmark</td>
<td>Mixture (1/1) of B. licheniformis (DSM 5749) and B. subtilis (DSM 5750) at 1.6 x 10⁹ CFU g⁻¹ of each bacterium. EU approved</td>
</tr>
<tr>
<td>Esporafeed Plus®</td>
<td>Swine</td>
<td>Norel, S.A., Madrid, Spain</td>
<td>1 x 10⁷ B. cereus (CECT 953). Not licensed in the EU</td>
</tr>
<tr>
<td>Lactopure</td>
<td>Poultry, calves and swine</td>
<td>Pharmed Medicare, Bangalore, India</td>
<td>Labelled as Lactobacillus sporogenes but contains B. coagulans</td>
</tr>
<tr>
<td>Neoferm BS 10</td>
<td>Poultry, calves and swine</td>
<td>Sanofi Santé Nutrition Animale, France</td>
<td>2 strains of B. clausii (CNMC MA23/3V and CNCM MA66/4M). Not licensed in the EU</td>
</tr>
<tr>
<td>Toyocerin®</td>
<td>Calves, poultry, rabbits and swine</td>
<td>Asahi Vet S.A., Tokyo (Head Office), Japan</td>
<td>B. cereus var toyoi (NCIMB-40112/CNCM-1012) at a minimum concentration of 1 x 10⁹ CFU g⁻¹ mixed with maize flour (4% by weight) and calcium carbonate (90% by weight). Licensed in the EU</td>
</tr>
</tbody>
</table>

*This shows just a selection of registered products from international companies.
In shrimp-producing countries the number of ‘local’ products is substantial, for example, in Vietnam over 30 different products are sold.

Table 3 *Bacillus* probiotics for aquaculture

<table>
<thead>
<tr>
<th>Brand</th>
<th>Manufacturer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaoZyme-Aqua</td>
<td>Sino-Aqua Corp., Kaohsiung, Taiwan</td>
<td>B. subtilis strains Wu-S and Wu-T at 10⁹ CFU g⁻¹, product also contains Lactobacillus and Saccharomyces spp</td>
</tr>
<tr>
<td>Biotaur®</td>
<td>Microbial Solutions, Johannesburg, South Africa and Advanced Microbial Systems, Shakopee, MN, USA</td>
<td>Mixture of B. megaterium, B. licheniformis, Paenibacillus polymyxa and two strains of B. subtilis (45)</td>
</tr>
<tr>
<td>Liqualife®</td>
<td>Cargill, Animal Nutrition Division www.cargill.com</td>
<td>Undefined Bacillus species</td>
</tr>
<tr>
<td>Promarine®</td>
<td>Sino-Aqua company Kaohsiung, Taiwan www.sino-aqua.com</td>
<td>Carries four strains of B. subtilis</td>
</tr>
<tr>
<td>Sanocare</td>
<td>INVE Technologies</td>
<td>Various Bacillus species</td>
</tr>
<tr>
<td>Sanolife</td>
<td>Belgium - www.inve.com</td>
<td>Various Bacillus species</td>
</tr>
</tbody>
</table>

Table 2 *Bacillus* probiotics for veterinary use

Table 3 *Bacillus* probiotics for aquaculture
the FDA in the US. It is being used in a number of products such as Sustenex and is also being incorporated into foods where spores can survive the mild heat-treatments used to sterilise foods.

B. subtilis and B. licheniformis

B. subtilis has been extensively studied at a genetic and physiological level so it is interesting that it is in use as a probiotic. Numerous probiotic products are labelled as carrying *B. subtilis* and in part, this probably results historically from a certain carelessness in assuming that most aerobic spore formers are *B. subtilis*. Accordingly, numerous products claiming to carry *B. subtilis* have been shown to carry other species (Tables 1, 4) (Fig 2, 3). However, *B. subtilis* var. Natto is worthy of comment. This bacterium is used in the fermentation of soybeans that is used to prepare the Japanese staple known as Natto. Natto carries as many as 10^8 viable spores per gram of product and for decades health benefits have been associated with consumption of Natto, including anti-cancer properties and stimulation of the immune sys-

Table 4 Vietnamese Bacillus OTC products licensed for human use

<table>
<thead>
<tr>
<th>Brand</th>
<th>Manufacturer</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Acimin</td>
<td>Viet-Duc Pharmaceutical Co. Ltd., Hanoi</td>
<td>Labelled as containing B. subtilis, L. acidophilus, S. faecalis but B. subtilis is B. cereus at 10^7/g</td>
</tr>
<tr>
<td>Bibactyl</td>
<td>Tediphar Corporation (TEDIPHARCO), Ho Chi Minh City, Vietnam</td>
<td>Sachet (1g) carrying 10^7-10^8 spores of B. subtilis</td>
</tr>
<tr>
<td>Bodiubtis</td>
<td>Bidi Phar. Binh Dinh Pharmaceutical and Medical Equipment Company, 498 Nguyen Thai Hoc, Qui Nhơn, Vietnam</td>
<td>Labelled sachets carrying 1 x 10^9 spores of B. cereus but mislabelled as B. subtilis</td>
</tr>
<tr>
<td>Biosubtyl</td>
<td>Biophar Company, Đà Lạt, Vietnam</td>
<td>Sachet (1g) carrying 10^7-10^8 cfu of B. cereus spores mixed with tapioca. Product labelled as B. subtilis. The strain is closely related by 16S rRNA analysis to IP 5832 used in Bactisubtil(^{10})</td>
</tr>
<tr>
<td>Biosubtyl DL (Fig 2)</td>
<td>IVAC, 18 Le Hong Phong, Đà Lạt, Vietnam</td>
<td>Sachets (1g) carrying 10^6-10^7 cfu of B. subtilis and L. acidophilus</td>
</tr>
<tr>
<td>Biosubtyl I and II</td>
<td>Biophar Company, Nha Trang, Vietnam</td>
<td>Sachet (1g) carrying 10^7-10^8 spores of B. pumilus spores mixed with tapioca. Product labelled as B. subtilis</td>
</tr>
<tr>
<td>Pastylbio</td>
<td>Pasteur Institute of Ho Chi Minh City, Vietnam</td>
<td>Sachets (1g) carrying 10^8 spores of B. subtilis</td>
</tr>
<tr>
<td>Subtyl</td>
<td>Mekophar, Pharmaceutical Factory No. 24, Ho Chi Minh City, Vietnam</td>
<td>Capsule carrying 10^9-10^10 spores of a B. cereus species termed B. cereus var. vietnami. Product labeled as carrying B. subtilis</td>
</tr>
<tr>
<td>Biobaby</td>
<td>ILdong Pharm Co., Ltd 60-1, SmKøenji-Dong, Ansung-Si, Kyong Ki-Do, Korea</td>
<td>Each gram of granules contains: Lactobacillus sporogenes 5.0 x 10^7 cfu; Clostridium butyricum 1.0x10^8 cfu; B. 3.0x10^8, Thiamine Nitrate 0.3 mg; Riboflavin 0.2 mg; Ascorbic Acid 5.0 mg; Nicotinamide 0.1 mg; Dibasic calcium phosphate 20.0 mg; Dried yeast 50.0 mg</td>
</tr>
<tr>
<td>Ildong Biovita</td>
<td>ILdong Pharm Co., Ltd 60-1, SmKøenji-Dong, Ansung-Si, Kyong Ki-Do, Korea</td>
<td>Each gram of granules contains: Lactobacillus sporogenes 5.0 x 10^7 cfu; Clostridium butyricum 1.0x10^8 cfu; B. subtilis 3.0x10^8; Thiamine Nitrate 0.3 mg; Riboflavin 0.2 mg; Ascorbic Acid 5.0 mg; Nicotinamide 0.1 mg; Dibasic calcium phosphate 20.0 mg; Dried yeast 50.0 mg</td>
</tr>
</tbody>
</table>
B. subtilis is a known human pathogen that is the cause of mild food poisoning due to the production of up to three enterotoxins and one emetic toxin (26). Not all strains of B. cereus carry enterotoxin genes yet a number of B. cereus probiotics have been shown to carry the enterotoxin genes (27) and one product, Paciflor, used in animal feed has been withdrawn from use in the EU (28). Despite this, B. cereus products are still being used for example, Toyerocin®, an animal feed product is registered for use in Europe (29) and Bactisubtil® as a registered as OTC products for human use. Interestingly, the strain of B. cereus used in Bactisubtil® known as IP5832 is the same as that in the withdrawn animal product Paciflor®.

HOW DO SPORE PROBIOTICS WORK?

Bacillus species are often considered soil organisms since spores can readily be retrieved from soil. However, attempting to isolate vegetative bacteria from soil is more problematic and it now seems likely that spores are designed to survive transit across the gastric barrier of animals that ingest them. This view originates from studies that show that spores of B. subtilis can germinate in the small intestine, grow and proliferate and then sporulate (30,31). Peristalsis ensures that spores are shed in faeces resulting in their accumulation in the soil. An intestinal habitat of spore formers helps explain why spores can be found in the gut of insects, animals and humans (4,32,33). Numerous studies have shown that germinating spores can elicit potent immune responses in the GI-tract of mouse models and this immune stimulation may be the underlying reason why spores exert a probiotic effect (34). One of the most informative, yet least recognised studies was one examining the effect of orally administered bacteria on the development of the gut-associated lymphoid tissue (GALT) in infant rabbits (35). In these studies, B. subtilis was shown to be of greater importance than other commensal bacteria in GALT development. Of course, other properties such as the secretion of antimicrobials such as Coagulin, Amicoumacin and Subtilisin may also further provide a probiotic effect by suppressing growth of competing microbes as well as enteric pathogens. Studies showing efficacy are less easy to distil yet a few convincing examples are as follows. In a poultry model B. subtilis spores were shown to suppress infection with pathogenic Salmonella enterica (36), Clostridium perfringens (36) and E. coli (37). A mouse model has been used to show suppression of Citrobacter rodentium (a model for the traveller’s diarrhoea pathogen, ETEC) by administration of B. subtilis spores (38).

SAFETY

Two spore formers, B. anthracis and B. cereus are known as human pathogens. The former requires no elaboration while the use of B. cereus appears to be a cause for concern on a case-by-case basis. The safety of Bacillus species has been extensively reviewed elsewhere (3,39-43) and most incidences of illness associated with Bacillus appear to result for opportunistic infections or mis-diagnosis. Extensive animal studies including acute and sub-chronic toxicity testing as well as in vitro studies have now been performed on a number of species, including B. subtilis var. Natto (44), B. indicus (44), B. coagulans (45) and B. subtilis 2335 (46) and B. licheniformis 2336 (46). All appear to show no indicators of adverse effects.

PRODUCTION

It is generally assumed that bacteria are most easily produced in liquid growth using a bioreactor and for many bacteria including Lactobacillus spp. this appears true. In recent work using a batch-fed process a maximum yield of 2 X 10¹⁰ spores/ml of medium could be obtained for B. subtilis but no higher (47). The authors of this work concluded that spore-forming efficiency in liquid medium is a self-limiting process and possibly subject to feedback regulation. By contrast, solid medium is almost
exclusively used in Vietnam for spore production where proprietary vegetable-based media can generate over 100-1000 times greater spore yields.

Recent innovations: functional foods
In recent work pigmented Bacillus species have been characterised and the pigment has been shown to be due one or more carotenoids (48). Yellow, orange, red and pink Bacillus species can be easily obtained from soil, river and pond sediments as well as from the intestinal tracts of animals (33,49,50). This includes a red pigmented Bacillus megaterium (51) a pink pigment found in some isolates of Bacillus firmus (52), and red pigment found in Bacillus atrophaeus (53,54). A variable yellow-orange pigmentation has been found in a number of species including, B. indicus (55), B. clausii (50), B. velderi (56), B. jeogalli (49), B. okihidensis (57), B. clarkii (58), B. pseudofirmus (58) and B. firmus (59). The carotenoids are found in the vegetative cell as well as in the spore and they help protect spores from UV radiation. It is not surprising that Bacillus species found in aquatic environments and the animals that inhabit these environments are often rich in carotenoids. Carotenoids are of nutritional value and used as dietary supplements. When used as supplements the recommended daily allowance of carotenoids is often quite high (e.g., 800 mg/day for β-carotene). The reason for this is that carotenoids are rapidly degraded in the stomach which raises questions over their nutritional value. Spore carotenoids though rapidly degraded in the stomach which raises questions over their nutritional value. Spore carotenoids though appear to be gastric stable and studies currently in progress are designed to establish the uptake of spore carotenoids using in vitro and in vivo models (SM Cutting, unpublished data). It is apparent that carotenoid-rich spores could be used commercially as dietary supplements providing a source of carotenoids as well as conferring probiotic properties.

A further development with spore probiotics is that they can survive mild heat treatments used to sterilise food. In principle, spores could be added to beverages and foods yet retain their probiotic properties. Indeed, such probiotic foods have already entered the market with 'Activate Muffins' containing GanedenBC30 launched by Isabella’s Health Bakery in the USA in 2008.

CONCLUSIONS
The use of spores of Bacillus species as probiotic dietary or food supplements is expanding rapidly with increasing number of studies demonstrating immune stimulation, antimicrobial activities and competitive exclusion. The single and most important advantage of these products is that they can be produced easily and the stability of the finished product can be assured, further they can be incorporated into everyday foods in spore form. Studies are showing that these bacteria are able to grow within the intestinal tract and possibly be considered temporary residents. This is important because it shows that these bacteria are not foreigners but rather may exert a unique symbiotic relationship with their host.

Acknowledgements
Research in the laboratory of SMC and TCD is supported by an EU 7th FP grant, KBBE-2007-207948.

Appendix 1
Approved products in Europe and the USA
Bacillus products that have been formally approved in the West are few. Numerous authors routinely cite subtilis as having GRAS (Generally Regarded as Safe) status but this is incorrect. Natto, the proteolytic enzyme that is purified from B. subtilis var Natto does carry GRAS status as a microbially produced enzyme but not the bacterium. In 2008 B. coagulans strain GanedenBC30 was the first Bacillus strain to be given self-affirmed GRAS approval. In Europe, for approval, for use as a supplement a case must be made based on prior use. The application is first made by authorities in the host country and then assessed by a EU committee. To date, B. subtilis has been approved for use as a supplement in Italy and the UK. B. clausii, used in the medicinal OTC product Enterogermina® (Fig 4) and B. cereus 1P5832 (Bactisubtil®) are registered as OTC products with specific claims regarding the prevention of childhood diarrhoea.

The Vietnamese market
In SE Asia, notably, Vietnam, where no concept of dietary supplements exists, Bacillus products are licensed with the Ministry of Health as medicinal supplements (Table 4) with claims ranging from prevention of rotavirus infection (infant diarrhoea) and food poisoning to immune stimulation. It is unclear whether their approval requires formal clinical trials but in any event these products are easily obtained and often used as the first line of defence against enteric infections both prophylactically but more often therapeutically. The use of Bacillus probiotics in Vietnam is more developed than in any other country and the reason for this is unclear. There is also intense interest in using heat-stable Bacillus spores in aquaculture and it is not uncommon for shrimp farms to use products produced for human use. Western companies are currently focusing their attention on Vietnam as a site for the manufacture of Bacillus probiotics where companies such as Nan Khoa Co Ltd and Nanogen Biopharma can provide ISO 9002 certification as well as GMP compliance.
REFERENCES

1. Hong HA, LH Duc, Cutting SM (2005)
 The use of bacterial spore formers as probiotics
 FEMS Microbiol Rev 29 813-835

 The use of Bacillus subtilis as an anti diarrhoeal microorganism
 Boll Chim Farmaceutico 133 3-18

 Spore formers as human probiotics: Bacillus, Sporolactobacillus, and
 Brevibacillus
 Comprehen Rev Food Sci Food Saf 2 101-110

4. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ,
 Henriques AO (2005)
 Screening for bacillus isolates in the broiler gastrointestinal tract
 Appl Environ Microbiol 71 968-978

5. Spinosa MR, Braccini T, Ricca E, De Felice M, Morelli L,
 On the fate of ingested Bacillus spores
 Rev Microbiol 151 361-368

 Surviability of a probiotic Lactobacillus casei in the gastrointestinal
 tract of healthy human volunteers and its impact on the faecal microflora
 J Appl Microbiol 102 1026-1032

 Resistance of Bacillus endospores to extreme terrestrial and extrater-
 restrial environments
 Microbiol Molecular Biol Rev 64 548-572

 Regulation of endospore formation in Bacillus subtilis
 Nature Rev Microbiol 1 117-126

 How do spores germinate?
 J Appl Microbiol 101 526-530

10. Coppi F, Ruspompo M, Mandressi A, Bellorsofonte C,
 Gonnella G, Trinchieri A (1985)
 Resistance of treatment with Bacillus subtilis spores (Enterogermina)
 after antibiotic therapy in 95 patients with infection calcuclus
 Chemioterapia 4 467-470

11. Green DH, Wakeley PR, Page A, Barnes A, Bacigalupi L,
 Characterization of two Bacillus probiotics
 App Env Microbiol 65 4288-4291

 Molecular characterization and identification of Bacillus clausii
 strains marketed for use in oral bacteriotherapy
 Appl Environ Microbiol 67 834-839

 Coagulin, a bactericin-like inhibitory substance produced by Bacill-
 us coagulans L4
 J Appl Microbiol 85 42-50

 Effect of long-term treatment with B. subtilis on the frequency of
 urinary tract infections in older patients
 Chemioterapia 2 142-144

 Production and probiotic effects of Natto. In: Bacterial spore for-
 mers: probiotics and emerging applications. Ricca E, Henriques AO,
 Cutting SM. Eds Horizon Bioscience, Wymondham, UK, p 143-154

 A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese
 Natto; a typical and popular soybean food in the Japanese diet
 Experiencia 43 1110-1111

 Effect of Bacillus natto-fermented product (BIOZYME) on blood
 alcohol, aldehyde concentrations after whisky drinking in human
 volunteers, and acute toxicity of acetaldehyde in mice
 Arukoku Kenkyuto Yakubutsu Ison 30 69-79

 Comparative evaluation of probiotic activity in respect to in vitro
 pneumotropic bacteria and pharmacodynamics of biosporin-strain
 producers in patients with chronic obstructive pulmonary diseases
 Voenno-Medisinskii Zhurnal 323 54-57

19. Osipova IG, Machailova NA, Sorokulova IB, Vasi'eva EA,
 Spore probiotics
 Zh Mikrobiol Epidemiol Immunobiol 3 113-119

 Pre-clinical trials of new spore probiotics
 Vestn Ross Akad Med Nauk 12 36-40

 A comparative study of the biological properties of Biosporin and
 other commercial Bacillus-based preparations
 Mikrobiologicheski Zhurnal 59 43-49

 Probiotics against Campylobacter Pathogens
 J Travel Med 4 167-170

 In vitro anti-Helicobacter pylori activity of the probiotic strain
 Bacillus subtilis 3 is due to secretion of antibiotics
 Antimicrob Agents Chemother 45 3156-3161

24. SCAN (2000)
 Report of the Scientific Committee on Animal Nutrition on product
 BioPlus 2B® for use as feed additive. European Commission, Health
 and Consumer Protection Directorate-General. Scientific Committee
 on Animal Nutrition (SCAN)

 From soil to gut: Bacillus cereus and its food poisoning toxins
 FEMS Microbiol Rev 32 579-606

 Characterization of Bacillus species used for oral bacteriotherapy
 and bacterioprophylaxis of gastrointestinal disorders
 Appl Env Microbiol 66 5241-5247

28. SCAN (2001)
 Assessment by the Scientific Committee on animal nutrition of the
 safety of product Pacilfer® for use as feed additive. European Com-
 mission, Health and Consumer Protection Directorate-General. Scientific Committee
 on Animal Nutrition (SCAN)

29. SCAN (2001)
 Report of the Scientific Committee on Animal Nutrition on product
 Toyocerin® for use as feed additive. European Commission, Health
 and Consumer Protection Directorate-General. Scientific Committee
 on Animal Nutrition (SCAN)

34 Hong AH, Duc HL, Cutting SM (2002) Immunogenicity and intracellular fate of *Bacillus subtilis* spores Microbiology (Submitted)

39 de Boer AS, Diderichsen B (1991) On the safety of *Bacillus subtilis* and *B. amyloliquefaciens*: a review Appl Microbiol Biotechnol 36 1-4

40 Ishibashi N, Yamazaki S (2002) *Bacillus subtilis* and *Bacillus pumilus* spores: probiotics and emerging applications, Ricca E, Henriques AO, Cutting SM Eds Horizon Bioscience, Norfolk, UK, p 93-106

42 Osipova IG, Sorokulova IB, Tereshkina NV, Grigor’eva LV (1998) Safety of bacteria of the genus *Bacillus*, forming the base of some probiotics Zh Mikrobiol Epidemiol Immunobiol 6 68-70

50 Yoon JH, Lee CH, Oh TK (2005) *Bacillus cibis* sp. nov., isolated from jeotgal, a traditional Korean fermented seafood Int J Syt Evol Microbiol 55 733-736

53 Fritz D, Pukall R (2001) Reclassification of biotindicator strains *Bacillus subtilis* DSM 675 and *Bacillus subtilis* DSM 2277 as *Bacillus atrophaeus* Int J Syt Evol Microbiol 51 35-37

54 Nakamura LK (1989) Taxonomic relationship of black-pigmented *Bacillus subtilis* strains and a proposal for *Bacillus atrophaeus* sp. nov Int J Systematic Bacteriol 39 295-300

56 Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterisation of novel alkaliophiles from bauxite-processing waste and description of *Bacillus vedderi* sp. nov., a new obligate alkaliophile Systematic Appl Microbiol 18 221-230

59 Reger H-J, Kuplyay JAC (1980) DNA base composition of halophilic and nonhalophilic *Bacillus firmus* strains of marine origin Microb Ecol 6 141-146